Comparative Genomics

Background & Strategy
March 30, 2016

What is the goal?

Develop a typing scheme for various Nontypeable *Haemophilus influenzae* (NTHi) strains
How specific are we getting?
How specific are we getting?
Typing of *H. influenzae*
The classification problem
The Classification Problem

Design a clear classification system which always correctly classifies objects as being part of or not part of a group.
Why is this problem hard?
Stated simply

Design a clear classification system which *always* correctly classifies objects as being part of or not part of a group.
Becomes complex, very quickly, and subjective...
Becomes complex, very quickly, and subjective...
Becomes complex, very quickly, and subjective…

Classification requires many-dimensional analysis
Distinguishing Key Elements

Cheung, 2005
Typing scheme: Which will happen?

Serotype A
 ├── Serotype B
 │ └── Serotype C
 │ ├── NT1
 │ │ ├── NT2
 │ │ │ └── NT3
 │ │ └── NT1
 │ └── NT2
 └── NT1

Serotype B
 ├── NT1
 │ └── NT2
 └── NT3

Serotype C
 └── NT3

Serotype A
 └── NT1

NT1

NT2
Global solutions
DNA-DNA Hybridization

- DNA from two species: A, a previously typed strain, and B, an unknown, are denatured and annealed.
 - Same species hybridize over >60% of their length
 - Closely related species hybridize over ~30-60% of their length
 - Evolutionarily unrelated (very distant) strains hybridize <20% of their length

- DDH is time consuming
 - Grows by G^3, for G genomes
 - Sample contamination is a significant problem

- DDH doesn’t differentiate very closely related species
 - *H. influenzae* and *H. haemolyticus* are ~62% identical by DDH
DNA-DNA Hybridization

1. Heat to separate strands.
2. Combine single strands of DNA.
3. Cool to allow renaturation of double-stranded DNA.
4. Determine degree of hybridization.

Complete hybridization: organisms identical
Partial hybridization: organisms related
No hybridization: organisms unrelated

Whitman et al, 2012
Average Nucleotide Identity

- Computational method to compare genomes
- Measures average % identity between two genomes
- Correlates strongly with DDH
- Likely same species: >70% DDH = >95% ANI
ANI - Method

1. Split genomes into 1020 nt fragments
2. Determine pairwise similarities
 a. Reciprocal best hits using BLAST (ANIb)
 b. MUM distance using nucmer (ANIim)
3. Remove low-scoring fragments
 a. Fragments with <70% ID across only a small portion of its length -- i.e. unique, non-shared blocks.
4. Average percent identities
Based on orthologs
MASH - Fast genome distance estimation

- Implementation of MinHash
 - An optimized set comparison algorithm
- Large sequence sets are converted to “sketches” (>5000x compression)
 - Equivalent to 1024nt blocks in an ANI
- Sketches can be compared to estimate similarity via MinHash
- Strong correlation between Mash Distance (D) and ANI
 - \(D = 1 - \text{ANI} \)
- Fast performance - 55,000 RefSeq genomes compared in 46 CPU hours
<table>
<thead>
<tr>
<th>S_1: CATGGACGACCAG</th>
<th>S_2: GCAGTACCGATCGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT</td>
<td>GTA</td>
</tr>
<tr>
<td>GAC</td>
<td>CGA</td>
</tr>
<tr>
<td>GAC</td>
<td>CGT</td>
</tr>
<tr>
<td>ATG</td>
<td>AGT</td>
</tr>
<tr>
<td>ACC</td>
<td>CCG</td>
</tr>
<tr>
<td>ACC</td>
<td>TCG</td>
</tr>
<tr>
<td>TGG</td>
<td>CAG</td>
</tr>
<tr>
<td>CCG</td>
<td>ACC</td>
</tr>
<tr>
<td>CCA</td>
<td>ATC</td>
</tr>
<tr>
<td>GGA</td>
<td>GCA</td>
</tr>
<tr>
<td>CGA</td>
<td>TAC</td>
</tr>
<tr>
<td>CAG</td>
<td>GAT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Γ_1</th>
<th>Γ_2</th>
<th>Γ_3</th>
<th>Γ_4</th>
<th>Γ_1</th>
<th>Γ_2</th>
<th>Γ_3</th>
<th>Γ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>14</td>
<td>57</td>
<td>36</td>
<td>CAT</td>
<td>GCA</td>
<td>36</td>
<td>19</td>
</tr>
<tr>
<td>14</td>
<td>57</td>
<td>36</td>
<td>19</td>
<td>ATG</td>
<td>CAG</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>58</td>
<td>37</td>
<td>16</td>
<td>15</td>
<td>TGG</td>
<td>AGT</td>
<td>11</td>
<td>54</td>
</tr>
<tr>
<td>40</td>
<td>23</td>
<td>2</td>
<td>61</td>
<td>GGA</td>
<td>GTA</td>
<td>44</td>
<td>27</td>
</tr>
<tr>
<td>33</td>
<td>28</td>
<td>11</td>
<td>54</td>
<td>GAC</td>
<td>TAC</td>
<td>49</td>
<td>44</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>47</td>
<td>26</td>
<td>ACC</td>
<td>ACC</td>
<td>5</td>
<td>48</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>60</td>
<td>43</td>
<td>CCG</td>
<td>CCG</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>7</td>
<td>50</td>
<td>45</td>
<td>CGA</td>
<td>CGA</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>33</td>
<td>28</td>
<td>11</td>
<td>54</td>
<td>GAC</td>
<td>GAT</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>47</td>
<td>26</td>
<td>ACC</td>
<td>ATC</td>
<td>13</td>
<td>56</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>62</td>
<td>41</td>
<td>CCA</td>
<td>TCG</td>
<td>54</td>
<td>33</td>
</tr>
<tr>
<td>18</td>
<td>13</td>
<td>56</td>
<td>39</td>
<td>CAG</td>
<td>CGT</td>
<td>27</td>
<td>6</td>
</tr>
</tbody>
</table>

min-mers
min-mers

\[[5, 1, 2, 15] \]
Sketch \((S_1)\)

\[[5, 1, 6, 6] \]
Sketch \((S_2)\)

\[J(S_1, S_2) \approx \frac{2}{4} = 0.5 \]

\(S_1:\) CATGGACCGACCAG

\(S_2:\) GCAG\underline{TACCG}ATCGT
MASH correlates strongly with ANI

Ondov et al, 2015
\[J(A, B) = \frac{|A \cap B|}{|A \cup B|} \approx \frac{|S(A \cup B) \cap S(A) \cap S(B)|}{|S(A \cup B)|} \]
Marker based solutions
What we observe can be divided into:

What we see
What we observe can be divided into:

- **What we see**

- **Signal**

- **Noise**
Multilocus sequence typing (MLST)

- Described in 1998 as a portable method for characterizing bacteria from nucleic sequences (from gels)

- Uses 450-500bp fragments of common bacterial housekeeping genes

- The sequences of each fragment are compared with all the previously identified sequences (alleles) at that locus and, thereby, are assigned allele numbers at each of the seven loci.

- MLST is now widely used for molecular epidemiology as it allows strains studied by different groups to be compared and MLST schemes have been developed for ~20 bacteria (mostly pathogens)
7 housekeeping genes

Strain A
- **abcZ**: G
- **adk**: ACTG
- **araE**: A
- **gdh**: C
- **pdhC**: CT
- **pgm**: TG
- **fumC**: TGA

Strain B
- **abcZ**: C
- **adk**: CCAG
- **araE**: G
- **gdh**: T
- **pdhC**: AG
- **pgm**: TG
- **fumC**: AGA

Strain C
- **abcZ**: G
- **adk**: ACTA
- **araE**: G
- **gdh**: T
- **pdhC**: CT
- **pgm**: GA
- **fumC**: TGT
Select 7 housekeeping genes in h.influenzae

BLAST search genomes for housekeeping genes, compares sequences and assign allele numbers and sequence types (ST)

Conduct a phylogenetic analysis based on differences between allelic profiles or sequence types to infer genetic relatedness between isolates

Sequence samples and assemble genomes
What if?
In our case

H. influenzae
Type X

~2200 genes

Signal
In our case...

What we see

H. influenzae Type X

~2200 genes

Signal
Do we group by present regions?

Do we separate by absent regions?

What we see

Signal

H. influenzae

~2200 genes
Where do we start?
Where do we start?
Antibody typing

Capsule protein
Capsule related genes

Satola et al., 2003
Other interesting categories

Virulence factors
- Fimbriae proteins
- Other membrane proteins

Metabolism proteins
Clustering and self organizing maps

Whole genome
Clustering and self organizing maps

Whole genome

Selected markers

Zamani et al, 2013
Where do we finish?

A serotype-like distinguishable genome; among the *H. influenzae* species characterized by a common set of physiologically relevant markers.

With a clear experimental validation protocol (e.g. PCR, antibodies)
Experimental protocol?

Forward Primer

Reverse Primer
And finally!
Conclusion: Flow Chart

1. MASH
2. ANI
3. HMM-SOM
4. MLST

Intermediate:
- Global information
- Locally based information

Final:
- Consensus
- Phylogenetic trees
References

